4.4 Article

Observation of an intermediate tryptophanyl radical in W306F mutant DNA photolyase from Escherichia coli supports electron hopping along the triple tryptophan chain

Journal

BIOCHEMISTRY
Volume 46, Issue 35, Pages 10072-10077

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi700891f

Keywords

-

Ask authors/readers for more resources

DNA photolyases repair UV-induced cyclobutane pyrimidine dimers in DNA by photoinduced electron transfer. The redox-active cofactor is FAD in its doubly reduced state FADH(-). Typically, during enzyme purification, the flavin is oxidized to its singly reduced semiquinone state FADH degrees. The catalytically potent state FADH(-) can be reestablished by so-called photoactivation. Upon photoexcitation, the FADH degrees is reduced by an intrinsic amino acid, the tryptophan W306 in Escherichia coli photolyase, which is 15 A distant. Initially, it has been believed that the electron passes directly from W306 to excited FADH degrees, in line with a report that replacement of W306 with redox-inactive phenylalanine (W306F mutant) suppressed the electron transfer to the flavin [Li, Y. F., et al. (1991) Biochemistry 30, 6322-6329]. Later it was realized that two more tryptophans (W382 and W359) are located between the flavin and W306; they may mediate the electron transfer from W306 to the flavin either by the superexchange mechanism (where they would enhance the electronic coupling between the flavin and W306 without being oxidized at any time) or as real redox intermediates in a three-step electron hopping process (FADH degrees* <- W382 <- W359 <- W306). Here we reinvestigate the W306F mutant photolyase by transient absorption spectroscopy. We demonstrate that electron transfer does occur upon excitation of FADH degrees and leads to the formation of FADH(-) and a deprotonated tryptophanyl radical, most likely W359 degrees. These photoproducts are formed in less than 10 ns and recombine to the dark state in similar to 1 mu s. These results support the electron hopping mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available