4.6 Article

Efficient method development strategy for challenging separation of pharmaceutical molecules using advanced chromatographic technologies

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1163, Issue 1-2, Pages 145-156

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2007.06.027

Keywords

method development strategy; computer-assisted chromatographic method development tool (ChromSword); LC Spiderling 9-port column switching system; betamethylepoxide; alphamethylepoxide

Ask authors/readers for more resources

In this paper, we describe a strategy that can be used to efficiently develop a high-performance liquid chromatography (HPLC) separation of challenging pharmaceutical molecules. This strategy involves use of advanced chromatographic technologies, such as a computer-assisted chromatographic method development tool (ChromSword) and an automated column switching system (LC Spiderling). This process significantly enhances the probability of achieving adequate separations and can be a large time saver for bench analytical scientists. In our study, the ChromSword was used for mobile phase screening and separation optimization, and the LC Spiderling was used to identify the most appropriate HPLC columns. For proof of concept, the analytes employed in this study are the structural epimers betamethylepoxide and alphamethylepoxide (also known as 16-beta methyl epoxide and 16-alpha methyl epoxide). Both of these compounds are used in the synthesis of various active pharmaceutical ingredients that are part of the steroid pharmaceutical products. While these molecules are relatively large in size and contain various polar functional groups and non-polar cyclic carbon chains, their structures differ only in the orientation of one methyl group. To our knowledge, there is no reported HPLC separation of these two molecules. A simple gradient method was quickly developed on a 5 cm YMC Hydrosphere C-18 column that separated betamethylepoxide and alphamethylepoxide in 10 min with a resolution factor of 3.0. This high resolution provided a true baseline separation even when the concentration ratio between these two epimers was 10,000:1. Although outside of the scope of this paper, stability-indicating assay and impurity profile methods for betamethylepoxide and for alphamethylepoxide have also been developed by our group based on a similar method development strategy. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available