4.4 Article

Bacteriophage evolution given spatial constraint

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 248, Issue 1, Pages 111-119

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2007.02.014

Keywords

bacteriophage; plaque; biofilm; spatial structure

Ask authors/readers for more resources

Spatial structure can impede mixing, diffusion, and motility. In microbiology laboratories, spatial structure is commonly achieved via formation of agar gels, within which bacteriophage (phage) replication results in localized clearings called plaques. Developing a better understanding of phage plaque formation is relevant because of the ubiquity of phage plaquing in the laboratory; because plaque size has been employed as a measure of phage fitness; because many bacteria exist within environments that display significant spatial structure (e.g., biofilms, soils, sediments, and in or on plant or animal tissues); and because spatial structure could impede phage exploitation of bacteria] communities. There is, however, a relative dearth of experimentation and analysis considering phage plaque formation from the perspective of selection acting on individual phage growth parameters-latent period, burst size, and adsorption rate. Here we consider the impact of these parameters on rates of plaque wavefront velocity (rates of radial plaque enlargement), especially as functions of existing phage and environmental properties. We do so based on analyses of published equations which predict plaque enlargement rates. These indicate that greater wavefront velocities should be associated with (i) latent period reductions, (ii) larger burst sizes, or (iii) faster virion binding to bacteria. We suggest, however, that deviations could occur, respectively, (i) if virion adsorption is slow or if burst sizes are large, (ii) if burst sizes are already large, or (iii) if virion binding rates are already fast, bacterial densities are especially high, or burst sizes are large. Higher initial lawn bacterial densities could also contribute to faster plaque expansion, but only if adsorption is otherwise slow or burst sizes are large. By contrast, faster virion diffusion is always expected to result in greater plaque wavefront velocities. Overall, we provide a snapshot of how phage populations may respond evolutionarily to selection for more-rapid propagation during spatially constrained growth. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available