4.5 Article

Long-term culture and neuronal survival after intraspinal transplantation of Human spinal cord-derived neurospheres

Journal

PHYSIOLOGY & BEHAVIOR
Volume 92, Issue 1-2, Pages 60-66

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.physbeh.2007.05.056

Keywords

human; embryonic; spinal cord; forebram; neurospheres; culture; PCNA; transplantation; spinal cord injury

Ask authors/readers for more resources

There is heterogeneity in neural stem and progenitor cell characteristics depending on their species and regional origin. In search for potent in vitro-expanded human neural precursor cells and cell therapy methods to repair the injured human spinal cord, the possible influence exerted by intrinsic cellular heterogeneity has to be considered. Data available on in vitro-expanded human spinal cord-derived cells are sparse and it has previously been difficult to establish long-term neurosphere cultures showing multipotentiality. In the present paper, human spinal cord-derived neurospheres were cultured in the presence of EGF, bFGF and CNTF for up to 25 passages (>350 days) in vitro. In contrast to the human first trimester subcortical forebrain, spinal cord tissue >9.5 weeks of gestation could not serve as a source for long-term neurosphere cultures under the present conditions. After withdrawal of mitogens, cultured neurospheres (at 18 passages) gave rise to cells with neuronal, astrocytic and oligodendrocytic phenotypes in vitro. After transplantation of human spinal cord-derived neurospheres to the lesioned spinal cord of immuno-deficient adult rats, large numbers of cells survived at least up to 6 weeks, expressing neuronal and astrocytic phenotypes. These results demonstrate that it is possible to expand and maintain multipotent human spinal cord-derived neurospheres in vitro for extended time-periods and that they have promising in vivo potential after engraftment to the injured spinal cord. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available