4.4 Article

N-terminal domain of Phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization

Journal

BIOCHEMISTRY
Volume 46, Issue 36, Pages 10353-10364

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi7009629

Keywords

-

Funding

  1. NHLBI NIH HHS [5T32HL07752] Funding Source: Medline
  2. NIDDK NIH HHS [DK40299, DK58277] Funding Source: Medline

Ask authors/readers for more resources

The phosphodiesterase-11A (PDE11) family consists of four splice variants (PDE11A1-PDE11A4) that contain a conserved carboxyl-terminal (C-terminal) catalytic domain that hydrolyzes cAMP and cGMP; the amino-termini (N-termini) vary in length and amino acid sequence. PDE11A2, PDE11A3, and PDE11A4 contain one or more GAF (c (G) under bar MP-binding phosphodiesterase, Anabaena (a) under bar denylyl cyclase, and Escherichia coli (F) under bar hlA) subdomains. In the present study, PDE11A1 and PDE11A2 demonstrated higher affinity for cAMP and cGMP when directly compared to that of the longest isoform, PDE11A4. Moreover, PDE11A3, PDE11A2, and PDE11A1, which contain progressively shorter N-termini, were more sensitive than PDE11A4 to inhibition by two structurally unrelated inhibitors, tadalafil (Cialis) and vardenafil (Levitra). The substrate and inhibitor affinity differences among the PDE11 isozymes could not be ascribed to differences in their quaternary structure since PDE11A4, PDE11A3, and PDE11A2 were determined to be dimers, and PDE11A1 was a tetramer. These data also demonstrate that PDE11 isozymes containing at least 123 C-terminal amino acids of the GAF-B domain are stable oligomers and that GAF-A is not required for oligomerization. The isolated PDE11 catalytic domain (Met-563-Asn934) displayed both monomeric and dimeric forms, and upon dilution, this domain was primarily monomeric, indicating that the main oligomerization contacts are within the N-termini of PDE isozymes. This report is the first to describe an inhibitory effect of the N-terminal region of PDE11A4 on the affinity of the catalytic domain for both substrates and inhibitors and the first to define the quaternary structure and the regions that contribute to this structure within the human PDE11A family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available