4.8 Article

Quantitative protein dynamics from dominant folding pathways

Journal

PHYSICAL REVIEW LETTERS
Volume 99, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.99.118102

Keywords

-

Ask authors/readers for more resources

We develop a theoretical approach to the protein-folding problem based on out-of-equilibrium stochastic dynamics. Within this framework, the computational difficulties related to the existence of large time scale gaps are removed, and simulating the entire reaction in atomistic details using existing computers becomes feasible. We discuss how to determine the most probable folding pathway, identify configurations representative of the transition state, and compute the most probable transition time. We perform an illustrative application of these ideas, studying the conformational evolution of alanine dipeptide, within an all-atom model based on the empiric GROMOS96 force field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available