4.8 Article

Gate-tuned high frequency response of carbon nanotube josephson junctions

Journal

PHYSICAL REVIEW LETTERS
Volume 99, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.99.117001

Keywords

-

Ask authors/readers for more resources

Carbon nanotube Josephson junctions in the open quantum dot limit are fabricated using Pd/Al bilayer electrodes, and exhibit gate-controlled superconducting switching currents. Shapiro voltage steps can be observed under radio frequency current excitations, with a damping of the phase dynamics that strongly depends on the gate voltage. These measurements are described by a standard resistively and capacitively shunted junction model showing that the switching currents from the superconducting to the normal state are close to the critical current of the junction. The effective dynamical capacitance of the nanotube junction is found to be strongly gate dependent, suggesting a diffusive contact of the nanotube.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available