4.7 Article

Dynamic behaviors of a delay differential equation model of plankton allelopathy

Journal

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Volume 206, Issue 2, Pages 733-754

Publisher

ELSEVIER
DOI: 10.1016/j.cam.2006.08.020

Keywords

competition; toxicology; Lyapunov functional; global attractivity; permanence; extinction

Ask authors/readers for more resources

In this paper, we consider a modified delay differential equation model of the growth of n-species of plankton having competitive and allelopathic effects on each other. We first obtain the sufficient conditions which guarantee the permanence of the system. As a corollary, for periodic case, we obtain a set of delay-dependent condition which ensures the existence of at least one positive periodic solution of the system. After that, by means of a suitable Lyapunov functional, sufficient conditions are derived for the global attractivity of the system. For the two-dimensional case, under some suitable assumptions, we prove that one of the components will be driven to extinction while the other will stabilize at a certain solution of a logistic equation. Examples show the feasibility of the main results. (C) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available