4.4 Article Proceedings Paper

Influence of ion implantation on titanium surfaces for medical applications

Journal

SURFACE SCIENCE
Volume 601, Issue 18, Pages 3856-3860

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.susc.2007.04.060

Keywords

titanium; ion implantation; X-ray photoelectron spectroscopy; auger electron spectroscopy

Ask authors/readers for more resources

The implantation of ions into the near surface layer is a new approach to improve the osseointegration of metallic biomaterials like titanium. Meanwhile it is well known that surface topography and surface physico-chemistry as well as visco-elastic properties influence the cell response after implantation of implants into the human body. To optimize the cell response of titanium, ion implantation techniques have been used to integrate calcium and phosphorus, both elements present in the inorganic bone phase. In this context, the concentration profile of the detected elements and their chemical state have been investigated using X-ray photoelectron spectroscopy and Auger electron spectroscopy depth profiling. Ion implantation leads to strong changes of the chemical composition of the near surface region, which are expected to modify the biofunctionality as observed in previous experiments on the cell response. The co-implantation of calcium and phosphorus samples, which showed best results in the performed tests (biological and physical), leads to a strong modification of the chemical surface composition. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available