4.8 Article

Regulation of phosphoglucose isomerase/autocrine motility factor activities by the poly(ADP-ribose) polymerase family-14

Journal

CANCER RESEARCH
Volume 67, Issue 18, Pages 8682-8689

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-07-1586

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA51714] Funding Source: Medline

Ask authors/readers for more resources

Phosphoglucose isomerase (PGI; EC 5.3.1.9) is a ubiquitous cytosolic enzyme essential for glycolysis and gluconeogenesis. PGI is a multifunctional dimeric protein that extracellularly acts as a cytokine [autocrine motility factor (AMF)] eliciting mitogenic, motogenic, and differentiation functions through binding to its cell surface receptor gp78/AMF receptor (AMFR). AMFR contains a seven-transmembrane domain with RING-H2 and leucine zipper motifs showing ubiquitin protein ligase (E3) activity and is exposed on the endoplasmic reticulum surface. Augmented expressions of both PGI/AMF and AMFR have been implicated in tumor progression and metastasis, and an intracellular binding partner of PGI/AMF is expected to regulate in part its diverse biological functions. Thus, we screened a cDNA library using a yeast two-hybrid system to search for interacting protein(s) and report on the finding of poly(ADP-ribose) polymerase-14 (PARP-14) to be a binding partner with PGI/AMF. PARP-14-PGI/AMF interaction was confirmed by coimmunoprecipitation and immunolocalization. We also report that PGI/AMF degradation is mainly regulated by the ubiquitin-lysosome system and RNA interference experiments revealed that PARP-14 inhibits PGI/AMF ubiquitination, thus contributing to its stabilization and secretion. This newly characterized PARP-14 protein should assist in understanding the regulation of PGI/AMF intracellular function(s) and may provide a new therapeutic target for inhibition of PGI/AMF inducing tumor cell migration and invasion during metastasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available