4.5 Article

Strategies for guided-wave structural health monitoring

Publisher

ROYAL SOC
DOI: 10.1098/rspa.2007.0048

Keywords

structural health monitoring; signal-to-noise ratio; damage detection; Lamb waves; temperature effects

Funding

  1. EPSRC [EP/E054951/1, EP/C541960/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/E054951/1, GR/S86334/01, GR/T01136/01, EP/C541960/1] Funding Source: researchfish

Ask authors/readers for more resources

Structural health monitoring (SHM) using guided waves is one of the only ways in which damage anywhere in a structure can be detected using a sparse array of permanently attached sensors. To distinguish damage from structural features, some form of comparison with damage-free reference data is essential, and here subtraction is considered. The detectability of damage is determined by the amplitude of residual signals from structural features remaining after the subtraction of reference data. These are non-zero due to changing environmental conditions such as temperature. In this paper, the amplitude of the residual signals is quantified for different guided-wave SHM strategies. Comparisons are made between two methods of reference signal subtraction and between two candidate sensor con. gurations. These studies allow estimates to be made of the number of sensors required per unit area to reliably detect a prescribed type of damage. It is shown that the number required is prohibitively high, even in the presence of modest temperature fluctuations, hence some form of temperature compensation is absolutely essential for guided-wave SHM systems to be viable. A potential solution is examined and shown to provide an improvement in signal suppression of approximately 30 dB, which corresponds to two orders of magnitude reduction in the number of sensors required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available