4.6 Article

Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2 N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 38, Pages 27622-27632

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M610778200

Keywords

-

Ask authors/readers for more resources

COX-2 and its products, including prostaglandin E-2, are involved in many inflammatory processes. Glucosamine (GS) is an amino monosaccharide and has been widely used for alternative regimen of (osteo) arthritis. However, the mechanism of action of GS on COX-2 expression remains unclear. Here we describe a new action mechanism of glucosamine hydrochloride (GS-HCl) to tackle endogenous and agonist-driven COX-2 at protein level. GS-HCl (but not GS sulfate, N-acetyl GS, or galactosamine HCl) resulted in a shift in the molecular mass of COX-2 from 72-74 to 66-70 kDa and concomitant inhibition of prostaglandin E2 production in a concentration-dependent manner in interleukin (IL)-1 beta-treated A549 human lung epithelial cells. Remarkably, GS-HCl-mediated decrease in COX-2 molecular mass was associated with inhibition of COX-2 N-glycosylation during translation, as assessed by the effect of tunicamycin, the protein N-glycosylation inhibitor, or of cycloheximide, the translation inhibitor, on COX-2 modification. Specifically, the effect of low concentration of GS-HCl (I mm) or of tunicamycin (0.1 mu g/ml) to produce the aglycosylated COX-2 was rescued by the proteasomal inhibitor MG132 but not by the lysosomal or caspase inhibitors. However, the proteasomal inhibitors did not show an effect at 5 mm GS-HCl, which produced the aglycosylated or completely deglycosylated form of COX-2. Notably, GS-HCl (5 mm) also facilitated degradation of the higher molecular species of COX-2 in IL-1 beta-treated A549 cells that was retarded by MG132. GS-HCl (5 mm) was also able to decrease the molecular mass of endogenous and IL-1 beta- or tumor necrosis factor-a-driven COX-2 in different human cell lines, including Hep2 (bronchial) and H292 (laryngeal). However, GS-HCl did not affect COX-1 protein expression. These results demonstrate for the first time that GS-HCl inhibits COX-2 activity by preventing COX-2 co-translational N-glycosylation and by facilitating COX-2 protein turnover during translation in a proteasome-dependent manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available