4.7 Article

Photodissociation of alkyl iodides in helium nanodroplets. II. Solvation dynamics

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2767262

Keywords

-

Ask authors/readers for more resources

The solvation dynamics of nonthermal species in liquid helium has been investigated by photolyzing alkyl iodide molecules, CH3I, C2H5I, and CF3I, embedded in helium nanodroplets. Iodine and CH3 fragments are found to leave the droplets solvated by a finite number of helium atoms, this in contrast to C2H5 and CF3 fragments. The speed distributions of the IHeN and CH3HeN complexes show a prominent correlation with the degree of solvation N. It is argued that this correlation is caused by a dynamical adjustment of the solvation structure size to the relative speed of the traveling fragments as they pass through the helium bath. The absence of C2H5HeN and CF3HeN complexes is attributed to the large internal energy of these alkyl fragments which leads to a rapid destruction of any possibly formed complexes. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available