4.6 Article

Electrostastic control of spontaneous curvature in catanionic reverse micelles

Journal

LANGMUIR
Volume 23, Issue 20, Pages 9983-9989

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la7016038

Keywords

-

Ask authors/readers for more resources

By means of small-angle neutron scattering and conductivity measurements, we study the microstructure of octylammoniumoctanoate/octane/water catanionic reverse microemulsions with an excess of anionic or cationic surfactant. Increasing the surface charge makes the microemulsion able to incorporate much more water than in the neutral case, up to 10 water molecules per surfactant. Even with charges in the surfactant film, wormlike micelles are present in the microemulsion domain. Along water dilution lines, the classical rod-to-sphere transition due to the minimization of the curvature energy of the rigid surfactant film is observed. When temperature is decreased, a re-entrant phase transition associated with the liquid-gas equilibrium of attractive cylinders is observed. Using the framework of the Tlusty-Safran theory, attraction could originate from junctions between wormlike reverse micelles. In any case, the spontaneous curvature of the catanionic surfactant film depends on both the temperature and the net charge, whatever the sign of the latter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available