4.5 Article

Polyoxometalate binding to human serum albumin: A thermodynamic and spectroscopic approach

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 111, Issue 38, Pages 11253-11259

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp072947u

Keywords

-

Ask authors/readers for more resources

The molecular recognition of polyoxometalates by human serum albumin is studied using two different polyoxometalates (POMs) at pH 7.5. The results are compared with those obtained at pH 3.5 and 9.0. At pH 7.5, both POMs strongly interact with the protein with different binding behaviors. The Keggin shaped POM, [H2W12O40](6-) (H2W12), specifically binds the protein, forming a complex with a 1:1 stoichiometry with K-a = 2.9 x 10(6) M-1. The binding constant decreased dramatically with the increase of the ionic strength, thus indicating a mostly electrostatic binding process. Isothermal titration calorimetry (ITC) experiments show that the binding is an enthalpically driven exothermic process. For the wheel shaped POM [NaP5W30O110](14-)(P5W30), there are up to five binding sites on the protein. Increasing the ionic strength changes the binding behavior significantly, leading to a simple exothermic process, with several binding sites. Competitive binding experiments indicate that the two POMs share one common binding site. In addition, they show the existence of another important binding site for P5W30. The two POMs exhibit different binding dependences on the pH. The combination of the experimental results with the knowledge of the surface map of the protein in its N-B conformation transition domain leads to the proposal for the probable binding site of POMs. The present work reveals a protein conformation change upon P5W30 binding, a new feature not explicitly documented in previous studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available