4.7 Article

Dissociation energy of the water dimer from quantum Monte Carlo calculations

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2770711

Keywords

-

Ask authors/readers for more resources

We report a study of the electronic dissociation energy of the water dimer using quantum Monte Carlo techniques. We have performed variational quantum Monte Carlo and diffusion quantum Monte Carlo (DMC) calculations of the electronic ground state of the water monomer and dimer using all-electron and pseudopotential approaches. We have used Slater-Jastrow trial wave functions with B3LYP type single-particle orbitals, into which we have incorporated backflow correlations. When backflow correlations are introduced, the total energy of the water monomer decreases by about 4-5 mhartree, yielding a DMC energy of -76.428 30(5) hartree, which is only 10 mhartree above the experimental value. In our pseudopotential DMC calculations, we have compared the total energies of the water monomer and dimer obtained using the locality approximation with those from the variational scheme recently proposed by Casula [Phys. Rev. B 74, 161102(R) (2006)]. The time step errors in the Casula scheme are larger, and the extrapolation of the energy to zero time step always lies above the result obtained with the locality approximation. However, the errors cancel when energy differences are taken, yielding electronic dissociation energies within error bars of each other. The dissociation energies obtained in our various all-electron and pseudopotential calculations range between 5.03(7) and 5.47(9) kcal/mol and are in good agreement with experiment. Our calculations give monomer dipole moments which range between 1.897(2) and 1.909(4) D and dimer dipole moments which range between 2.628(6) and 2.672(5) D. (C) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available