4.5 Article

The effect of bleeding on hematopoietic stem cell cycling and self-renewal

Journal

STEM CELLS AND DEVELOPMENT
Volume 16, Issue 5, Pages 707-717

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2007.0017

Keywords

-

Funding

  1. NCI NIH HHS [CA42551, CA86065] Funding Source: Medline
  2. NIDDK NIH HHS [DK58770] Funding Source: Medline
  3. NIGMS NIH HHS [5T32GM07365] Funding Source: Medline

Ask authors/readers for more resources

Hematopoietic stem cells (HSCs) divide and give rise to more committed progenitors, which ultimately produce all lineages of blood cells. HSCs can be induced to enter the cell cycle in vitro and in vivo by stimulatory cytokines and in vivo by ablation of bone marrow ( BM) cells with irradiation or chemotherapeutic agents. Although it has been postulated that rates of HSC proliferation increase with normal hematopoietic stresses, such as infection or hemorrhage, this hypothesis has never been directly tested. The ability to analyze HSCs prospectively by cell-surface phenotype c-kit(+), Thy1.1(lo), Sca-1(+), Lineage(neg/lo) has allowed us to perform a detailed examination of the effects of bleeding on the cell cycle kinetics of HSCs. Our results demonstrate for the first time that HSCs in both the BM and the spleen proliferate and self-renew in response to tail-vein bleeding in mice. This response was suppressed when red blood cells, but not when white blood cells, were transferred after bleeding. Thus, regulators of HSC proliferation can sense and respond to red blood cell levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available