4.4 Article

Some aspects concerning the combination of downsizing with turbocharging, variable compression ratio, and variable intake valve lift

Publisher

PROFESSIONAL ENGINEERING PUBLISHING LTD
DOI: 10.1243/09544070JAUTO449

Keywords

efficiency; downsizing; turbocharging; variable compression ratio; variable valve timing

Ask authors/readers for more resources

The inefficient running of the spark ignition engine at part loads due to the load control method but, mostly, their major weighting in the vehicle's operation time justifies the interest in the technical solutions, which act in this particular operating range. These drawbacks encountered at low part loads are even more amplified when considering larger engines. For instance, it is well known that, at the same engine load, a larger engine is more throttled than a smaller engine; therefore the concerns are the higher pumping work, the lower real compression ratio, and the overall mechanical efficiency, which is also lower. One solution is a reduction in the displacement without affecting the power output. This is what is now commonly known as the downsizing technique. The combination of downsizing and uploading an engine has been known for a long time. However, the conversion, in an acceptable way, of this potential to actual practice is very challenging. On the one hand, the degree of the downsizing is related to the boost pressure. In order to cope with the knocking phenomenon, the downsized high-pressure turbocharged gasoline engine requires a lower volumetric compression ratio that limits the efficiency on part loads. Therefore, the degree of the downsizing has been limited and, thus, the possible fuel consumption reduction has not, et been fully achieved. On the other hand, other problems are encountered when considering a downsized turbocharged gasoline engine: insufficient low-end torque, poor starting performance, and turbo lag. In order to solve these problems an effective combination of the downsized turbocharged gasoline engine with additional technologies is needed. Thus, the paper will present a so-called adaptive thermal engine, which has at the same time a variable compression ratio and a variable intake valve lift. It will then be demonstrated that it is highly suitable for turbocharging, thus resulting in a high downsizing factor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available