4.7 Article Proceedings Paper

Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 45, Issue 10, Pages 3012-3021

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2007.904923

Keywords

image fusion; multispectral (MS) imagery; pansharpening; quality assessment; QuickBird (QB); simulated Pleiades data

Ask authors/readers for more resources

In January 2006, the Data Fusion Committee of the IEEE Geoscience and Remote Sensing Society launched a public contest for pansharpening algorithms, which aimed to identify the ones that perform best. Seven research groups worldwide participated in the contest, testing eight algorithms following different philosophies [component substitution, multiresolution analysis (MRA), detail injection, etc.]. Several complete data sets from two different sensors, namely, QuickBird and simulated Pleiades, were delivered to all participants. The fusion results were collected and evaluated, both visually and objectively. Quantitative results of pansharpening were possible owing to the availability of reference originals obtained either by simulating the data collected from the satellite sensor by means of higher resolution data from an airborne platform, in the case of the Pleiades data, or by first degrading all the available data to a coarser resolution and saving the original as the reference, in the case of the QuickBird data. The evaluation results were presented during the special session on Data Fusion at the 2006 International Geoscience and Remote Sensing Symposium in Denver, and these are discussed in further detail in this paper. Two algorithms outperform all the others, the visual analysis being confirmed by the quantitative evaluation. These two methods share the same philosophy: they basically rely on MRA and employ adaptive models for the injection of high-pass details.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available