4.7 Article

Spitzer transit and secondary eclipse photometry of GJ 436b

Journal

ASTROPHYSICAL JOURNAL
Volume 667, Issue 2, Pages L199-L202

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/522496

Keywords

eclipses; infrared : stars; planetary systems; stars : fundamental parameters; stars : individual (GJ 436); stars : low-mass; brown dwarfs

Ask authors/readers for more resources

We report the results of infrared (8 mu m) transit and secondary eclipse photometry of the hot Neptune exoplanet, GJ 436b using Spitzer. The nearly photon-limited precision of these data allows us to measure an improved radius for the planet and to detect the secondary eclipse. The transit (centered at HJD = 2454280.78149 +/- 0.00016) shows the flat-bottomed shape typical of infrared transits, and it precisely defines the planet-to-star 0.00016 radius ratio (), independent of the stellar properties. However, we obtain the planetary radius, 0.0839 +/- 0.0005 as well as the stellar mass and radius, by fitting to the transit curve simultaneously with an empirical mass-radius relation for M dwarfs (M = R). We find R* = M* 0.47 +/- 0.02 in solar units, and R-p = 27,600 +/- 1170 km 4.33 +/- 0.18 R-circle plus). This radius significantly exceeds the radius of a naked ocean planet and requires a gaseous hydrogen-helium envelope. The secondary eclipse occurs at phase, proving a significant orbital 0.587 +/- 0.005 eccentricity (e = 0.150 +/- 0.012). The amplitude of the eclipse [(5.7 +/- 0.8) x 10(-4)] indicates a brightness tem- perature for the planet of T = 712 +/- 36 K. If this is indicative of the planet's physical temperature, it suggests T = 712 +/- 36 the occurrence of tidal heating in the planet. An uncharacterized second planet likely provides ongoing gravitational perturbations that maintain GJ 436b's orbit eccentricity over long timescales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available