4.6 Article

Structural distortions and model Hamiltonian parameters:: From LSDA to a tight-binding description of LaMnO3

Journal

PHYSICAL REVIEW B
Volume 76, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.155105

Keywords

-

Ask authors/readers for more resources

The physics of manganites is often described within an effective two-band tight-binding (TB) model for the Mn e(g) electrons, which apart from the kinetic energy includes also a local Hund's rule coupling to the t(2g) core spin and a local coupling to the Jahn-Teller (JT) distortion of the oxygen octahedra. We test the validity of this model by comparing the energy dispersion calculated for the TB model with the full Kohn-Sham band structure calculated within the local spin-density approximation (LSDA) to density functional theory. We analyze the effect of magnetic order, JT distortions, and GdFeO3-type tilt rotations of the oxygen octahedra. We show that the hopping amplitudes are independent of magnetic order and JT distortions and that both effects can be described with a consistent set of model parameters if hopping between both nearest and next-nearest neighbors is taken into account. We determine a full set of model parameters from the density functional theory calculations, and we show that both JT distortions and Hund's rule coupling are required to obtain an insulating ground state within LSDA. Furthermore, our calculations show that the GdFeO3-type rotations of the oxygen octahedra lead to a substantial reduction of the hopping amplitudes but to no significant deviation from the simple TB model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available