4.3 Article

Conductivity measurements of femtosecond laser-plasma filaments

Journal

IEEE TRANSACTIONS ON PLASMA SCIENCE
Volume 35, Issue 5, Pages 1430-1436

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPS.2007.901951

Keywords

air propagation; filament conductivity; filamentation; laser-plasma interaction; ultrashort pulses

Ask authors/readers for more resources

Experiments are performed to characterize the electrical properties of plasma filaments that are generated by self-guided femtosecond laser pulses propagating in air. A single plasma filament passes through a high-voltage sphere pulsed at -100 kV to a grounded electrode, which serves as a current monitor. The experiments utilize moderate electric fields to probe the filament conductivity, thereby avoiding the strong perturbations caused by electric discharges. The measured filament current decreases as similar to 1/R-2 as the separation R between the electrodes is increased up to 1.5 m. The pulselength of the filament current signal is 2 ns (full-width at half-maximum), but the time resolution is limited by the bandwidth of the oscilloscope. The typical plasma density in the conducting filament is 9 x 10(15) cm(-3), which is inferred from the conductivity measurements and the size of the optical filaments. Comparisons are made with mobility values derived from electron swarm data, where the mobility depends upon the applied electric field. The conductivity of the filament is measured as the laser pulselength is varied from 50 fs to 1.5 ps. We find that relatively long laser pulses (1 ps) produce filaments with the largest conductivity. A model is used to predict the longitudinal position where the plasma filament forms and is in reasonably good agreement with measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available