4.6 Article

Human parietal reach region primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual-motor dissociation task

Journal

CEREBRAL CORTEX
Volume 17, Issue 10, Pages 2283-2292

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhl137

Keywords

pointing; precuneus; reaching; reversing prism adaptation; visuomotor learning; visuomotor transformation

Categories

Ask authors/readers for more resources

Posterior parietal cortex (PPC) participates in the planning of visuospatial behaviors, including reach movements, in gaze-centered coordinates. It is not known if these representations encode the visual goal in retinal coordinates, or the movement direction relative to gaze. Here, by dissociating the intrinsic retinal stimulus from the extrinsic direction of movement, we show that PPC employs a visual code. Using delayed pointing and event-related functional magnetic resonance imaging, we identified a cluster of PPC regions whose activity was topographically (contralaterally) related to the direction of the planned movement. We then switched the normal visual-motor spatial relationship by adapting subjects to optical left/right reversing prisms. With prisms, movement-related PPC topography reversed, remaining tied to the retinal image. Thus, remarkably, the PPC region in each hemisphere now responded more for planned ipsilateral pointing movements. Other non-PPC regions showed the opposite world- or motor-fixed pattern. These findings suggest that PPC primarily encodes not motor commands but movement goals in visual coordinates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available