4.6 Article

Bimodal counting statistics in single-electron tunneling through a quantum dot

Journal

PHYSICAL REVIEW B
Volume 76, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.155307

Keywords

-

Ask authors/readers for more resources

We explore the full counting statistics of single-electron tunneling through a quantum dot using a quantum point contact as noninvasive high bandwidth charge detector. The distribution of counted tunneling events is measured as a function of gate and source-drain voltages for several consecutive electron numbers on the quantum dot. For certain configurations, we observe super-Poissonian statistics for bias voltages at which excited states become accessible. The associated counting distributions interestingly show a bimodal characteristic. Analyzing the time dependence of the number of electron counts, we relate this to a slow switching between different electron configurations on the quantum dot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available