4.4 Article

Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli

Journal

INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY
Volume 305, Issue 1, Pages 85-95

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.ijmm.2014.11.005

Keywords

Caltropis procera; Nanoparticles; In vivo; Colonization; Infant mouse model; Biofilm; Minimal inhibitory concentration; Survival curve; Therapeutic agent; Antimicrobial activity

Funding

  1. Austrian FWF [P25691]
  2. DK Molecular Enzymology [W901-B12]
  3. Erasmus Mundus ELEMENT program
  4. European Commission
  5. Austrian Science Fund (FWF) [W 901] Funding Source: researchfish

Ask authors/readers for more resources

Vihrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV-visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 10(8) particles/ml with mode particles sizes of approx. 90-100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5 x 10(8) and 10(7) particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively. (C) 2014 The Authors. Published by Elsevier GmbH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available