4.3 Review

Neuronal calcium channels: Splicing for optimal performance

Journal

CELL CALCIUM
Volume 42, Issue 4-5, Pages 409-417

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2007.04.003

Keywords

calcium channel; N-type; Ca(V)2.2; Nociception; development; alternative splicing; modulation; Opioids; GABA; synprint

Categories

Funding

  1. NINDS NIH HHS [NS055251, R01 NS029967-15, R01 NS055251, NS29967, R01 NS029967] Funding Source: Medline

Ask authors/readers for more resources

Calcium ion channels coordinate an astounding number of cellular functions. Surprisingly, only 10 Ca-v alpha(1) subunit genes encode the structural cores of all voltage-gated calcium channels. What mechanisms exist to modify the structure of calcium channels and optimize their coupling to the rich spectrum of cellular functions? Growing evidence points to the contribution of post-translational alternative processing of calcium channel RNA as the main mechanism for expanding the functional potential of this important gene family. Alternative splicing of RNA is essential during neuronal development where fine adjustments in protein signaling promote and inhibit cell-cell interactions and underlie axonal guidance. However, attributing a specific functional role to an individual splice isoform or splice site has been difficult. In this regard, studies of ion channels are advantageous because their function can be monitored with precision, allowing even subtle changes in channel activity to be detected. Such studies are especially insightful when coupled with information about isoform expression patterns and cellular localization. In this paper, we focus on two sites of alternative splicing in the N-type calcium channel Ca(v)2.2 gene. We first describe cassette exon 18a that encodes a 21 amino acid segment in the II-III intracellular loop region of Ca(v)2.2. Here, we show that e18a is upregulated in the nervous system during development. We discuss these new data in light of our previous reports showing that e18a protects the N-type channel from cumulative inactivation. Second, we discuss our published data on exons e37a and e376, which encode 32 amino acids in the intracellular C-terminus of Ca(v)2.2. These exons are expressed in a mutually exclusive manner. Exon e37a-containing Ca(v)2.2 mRNAs and their resultant channels express at higher density in dorsal root ganglia and, as we showed recently, e37a increases N-type channel sensitivity to G-protein-mediated inhibition, as compared to generic e37b-containing N-type channels. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available