4.5 Article

Imaging artifacts of medical instruments in ultrasound-guided interventions

Journal

JOURNAL OF ULTRASOUND IN MEDICINE
Volume 26, Issue 10, Pages 1303-1322

Publisher

WILEY
DOI: 10.7863/jum.2007.26.10.1303

Keywords

imaging artifacts; medical instruments; ultrasound-guided interventions

Funding

  1. NHLBI NIH HHS [R01 HL073647] Funding Source: Medline
  2. NIBIB NIH HHS [1 R01 EB003052] Funding Source: Medline

Ask authors/readers for more resources

Objective. Real-time 3-dimensional (3D) ultrasound imaging has the potential to become a dominant imaging technique for minimally invasive surgery. One barrier to its widespread use is that surgical instruments generate imaging artifacts, which can obfuscate their location, orientation, and geometry and obscure nearby tissue. The purpose of this study was to identify and describe the types of artifacts which could be produced by metallic instruments during interventions guided by 3D ultrasound imaging. Methods. Three imaging studies were performed. First, imaging artifacts from stainless steel rods were identified in vitro and acoustically characterized. Second, 3 typical minimally invasive instruments were imaged (in vitro and in vivo), and their artifacts were analyzed. The third study compared the intensity of imaging artifacts (in vitro and in vivo) from stainless steel rods with rods composed of 3 different materials and stainless steel rods with roughened and coated surfaces. Results. For the stainless steel rods, all observed artifacts are described and illustrated, and their physical origins are explained. Artifacts from the 3 minimally invasive instruments are characterized with the use of the artifacts observed with the rods. Finally, it is shown that artifacts can be greatly reduced through the use of alternate materials or by surface modification. Conclusions. Instrument artifacts in 3D ultrasound images can be more confusing than those from the same instruments imaged in 2 dimensions. Real-time 3D ultrasound imaging can, however, be used effectively for in vivo imaging of minimally invasive instruments by using artifact mitigation techniques, including careful selection of probe and incision locations, as well as by instrument modification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available