4.3 Article

Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMCB.2007.903706

Keywords

global convergence; linear programming; linear variational inequality (LVI); quadratic programming; recurrent neural network

Ask authors/readers for more resources

Most existing neural networks for solving linear variational inequalities (LVIs) with the mapping Mx + p require positive definiteness (or positive semidefiniteness) of M. In this correspondence, it is revealed that this condition is sufficient but not necessary for an LVI being strictly monotone (or monotone) on its constrained set where equality constraints are present. Then, it is proposed to reformulate monotone LVIs with equality constraints into LVIs with inequality constraints only, which are then possible to be solved by using some existing neural networks. General projection neural networks are designed in this correspondence for solving the transformed LVIs. Compared with existing neural networks, the designed neural networks feature lower model complexity. Moreover, the neural networks are guaranteed to be globally convergent to solutions of the LVI under the condition that the linear mapping Mx + p is monotone on the constrained set. Because quadratic and linear programming problems are special cases of LVI in terms of solutions, the designed neural networks can solve them efficiently as well. In addition, it is discovered that the designed neural network in a specific case turns out to be the primal-dual network for solving quadratic or linear programming problems. The effectiveness of the neural networks is illustrated by several numerical examples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available