4.7 Article

Renormalized Newtonian cosmic evolution with primordial non-Gaussianity

Journal

PHYSICAL REVIEW D
Volume 76, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.76.083517

Keywords

-

Ask authors/readers for more resources

We study Newtonian cosmological perturbation theory from a field theoretical point of view. We derive a path integral representation for the cosmological evolution of stochastic fluctuations. Our main result is the closed form of the generating functional valid for any initial statistics. Moreover, we extend the renormalization group method proposed by Mataresse and Pietroni to the case of primordial non-Gaussian density and velocity fluctuations. As an application, we calculate the nonlinear propagator and examine how the non-Gaussianity affects the memory of cosmic fields to their initial conditions. It turns out that the non-Gaussianity affects the nonlinear propagator. In the case of positive skewness, the onset of the nonlinearity is advanced with a given comoving wave number. On the other hand, the negative skewness gives the opposite result.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available