4.5 Article

Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 27, Issue 20, Pages 7113-7124

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00928-07

Keywords

-

Ask authors/readers for more resources

Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that the mTor (mammalian target of rapamycin)-S6K1 (S6 kinase 1) pathway is activated by Reelin and that this depends on Dahl (Disabled-1) phosphorylation and activation of PI3K and Akt (protein kinase B). PI3K and Akt are required for the effects of Reelin on the organization of the cortical plate, but their downstream partners mTor and glycogen synthase kinase 3 beta (GSK3 beta) are not. On the other hand, mTor, but not GSK3 beta, mediates the effects of Reelin on the growth and branching of dendrites of hippocampal neurons. In addition, PI3K fosters radial migration of cortical neurons through the intermediate zone, an effect that is independent of Reelin and Akt.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available