4.6 Article

Mechanisms used to restore ventilation after partial upper airway collapse during sleep in humans

Journal

THORAX
Volume 62, Issue 10, Pages 861-867

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/thx.2006.070300

Keywords

-

Funding

  1. NCRR NIH HHS [M01 RR001032, M01 RR01032] Funding Source: Medline
  2. NHLBI NIH HHS [P50 HL60292, HL73146-01, R01 HL073146, P50 HL060292, R01 HL073146-03] Funding Source: Medline
  3. NIA NIH HHS [K23 AG024837-04, AG024837-01, K23 AG024837] Funding Source: Medline

Ask authors/readers for more resources

Background: Most patients with obstructive sleep apnoea (OSA) can restore airflow after an obstructive respiratory event without arousal at least some of the time. The mechanisms that enable this ventilatory recovery are unclear but probably include increased upper airway dilator muscle activity and/or changes in respiratory timing. The aims of this study were to compare the ability to recover ventilation and the mechanisms of compensation following a sudden reduction of continuous positive airway pressure ( CPAP) in subjects with and without OSA. Methods: Ten obese patients with OSA (mean (SD) apnoea-hypopnoea index 62.6 (12.4) events/h) and 15 healthy non-obese non-snorers were instrumented with intramuscular genioglossus electrodes and a mask/ pneumotachograph which was connected to a modified CPAP device that could deliver either continuous positive or negative pressure. During stable non-rapid eye movement sleep the CPAP was repeatedly reduced 2-10 cm H2O below the level required to eliminate flow limitation and was held at this level for 5 min or until arousal from sleep occurred. Results: During reduced CPAP the increases in genioglossus activity (311.5 (49.4)% of baseline in subjects with OSA and 315.4 (76.2)% of baseline in non-snorers, p = 0.9) and duty cycle (123.8 (3.9)% of baseline in subjects with OSA and 118.2 (2.8)% of baseline in non-snorers, p = 0.4) were similar in both groups, yet patients with OSA could restore ventilation without cortical arousal less often than non-snorers (54.1% vs 65.7% of pressure drops, p = 0.04). When ventilatory recovery did not occur, genioglossus muscle and respiratory timing changes still occurred but these did not yield adequate pharyngeal patency/ ventilation. Conclusions: Compensatory mechanisms (increased genioglossus muscle activity and/or duty cycle) often restore ventilation during sleep but may be less effective in obese patients with OSA than in non-snorers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available