4.7 Article

Modeling and experimental validation of the force-surface roughness relation for smoothing burnishing with a spherical tool

Journal

INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
Volume 47, Issue 12-13, Pages 1956-1964

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2007.03.002

Keywords

smoothing burnishing; surface roughness; burnishing force; burnishing model

Ask authors/readers for more resources

The effect of a smoothing-burnishing process strongly depends on the initial roughness of a workpiece. This factor has not been considered by existing classical models of the processes. In this paper, assuming a model of burnishing with a spherical tool, in the form of wedges of surface roughness deformed with a force normal to the base line, expressions describing the relation between burnishing force and displacement of the tops of surface asperities is derived. The expression includes the effect of mechanical properties of the workpiece material, geometry of contact of the tool with the workpiece and the roughness of the burnished surface. Using the derived expressions it is possible to determine an optimum burnishing force. This has been verified experimentally. The experiment made it possible to demonstrate that the optimum burnishing force of the ground 42CrMo4 steel samples was 11-15 daN and that the burnishing effect depends a lot not only on the mechanical properties of the machined workpiece and the geometry of the contact area between the tool and the workpiece but also on the initial surface roughness. The applied optimum burnishing force, calculated on the basis of the theoretical, assumed model-derived dependences, is 12-13 daN. The above proves the validity of the adopted assumptions and the formulas worked out. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available