4.7 Article

On the intumescence of ethylene-acrylate copolymers blended with chalk and silicone

Journal

POLYMER DEGRADATION AND STABILITY
Volume 92, Issue 10, Pages 1899-1910

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2007.06.014

Keywords

polyolefin; acrylic; halogen-free; flame retardant; intumescence; chalk

Ask authors/readers for more resources

The combustion and melt dripping of poly(ethylene-co-butyl acrylate) (EBA), EBA blended with polypropylene (EBA-PP) and poly (ethylene-co-methacrylic acid) (EMAA), each blended with calcium carbonate and polydimethylsiloxane, were studied. In situ measurement of the temperature gradient in the cone calorimeter were combined with infrared spectroscopy measurements on specimens withdrawn and quenched at different times of the experiment. The reactions that govern the degradation at the high heating rates met in the combustion could be determined and the gap to analytical techniques such as thermogravimetry bridged. The interplay of mechanical char integrity and heat feedback by the flame determined how much time the specimen dwells in temperature range of 300-420 degrees C where char expansion due to calcium salt formation is effective and thereby affects the heat release rate strongly. Vertical cone calorimeter and vertical flame testing were used to assess melt dripping and char stability under flaming combustion. Plate-plate rheological measurements proofed to be of limited use to compare the effect of different degradation atmospheres on the melt viscosity. The EMAA formulation had the most effective intumescent process with a low heat release rate and good char stability even in vertical configuration. Electron-beam irradiated EMAA specimens with different levels of cross-links were tested in the cone calorimeter in order to understand the role of cross-links for the intumescent process. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available