4.7 Article

The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 50, Issue 21-22, Pages 4331-4341

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijheatmasstransfer.2007.01.064

Keywords

-

Ask authors/readers for more resources

The paper features the mathematical model of calculation of thermophysical properties for nanofluids on the basis of statistical nanomechanics. Calculation of properties for nanofluids for real substances is possible by the classical and statistical mechanics. Classical mechanics has no insight into the microstructure of the substance. Statistical mechanics, on the other hand, calculates the properties of state on the basis of molecular motions in a space, and on the basis of the intermolecular interactions. The equations obtained by means of classical thermornechanics are empirical and apply only in the region under observation. The main drawback of classical thermomechanics is that it lacks the insight into the substance of microstructure. Contrary to classical mechanics, statistical mechanics calculates the thermornechanic properties of state on the basis of intermolecular and intramolecular interactions between particles in the same system of molecules. It deals with the systems composed of a very large number of particles. The results of the analysis are compared with experimental data and show a relatively good agreement. The analytical results obtained by statistical mechanics are compared with the experimental data and show relatively good agreement. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available