4.6 Article

Biosynthesis of Staphylococcus aureus the Synechocystis autoinducing peptides by using DnaB mini-intein

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 73, Issue 19, Pages 6036-6044

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00912-07

Keywords

-

Funding

  1. NIAID NIH HHS [T32 AI007511, T32 AI07511] Funding Source: Medline

Ask authors/readers for more resources

The Agr quorum-sensing system of Staphylococcus aureus modulates the expression of virulence factors in response to autoinducing peptides (AIPs). The peptides are seven to nine residues in length and have the C-terminal five residues constrained in a thiolactone ring. We have developed a new method to generate AIP structures using an engineered DnaB mini-intein from Synechocystis sp. strain PCC6803. In the method, an oligonucleotide encoding the AIP is ligated to the intein and the fusion protein is expressed and purified by affinity chromatography. To produce the correct AIP structure, intein splicing is interrupted, allowing the cysteine side chain to catalyze thiolactone ring formation and release AIP from the resin. The technique is simple and robust, and we have successfully produced the three main classes of AIPs using the intein system. The intein-generated AIPs possessed the correct thiolactone ring modification based on biochemical analysis, and, importantly, all the samples were bioactive against S. aureus. The AIP activity was confirmed through Agr interference and activation profiling with developed S. aureus reporter strains. The simplicity of the method, benefits of DNA encoding, and scalable nature enable the production of S. aureus AIPs for many biological applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available