3.9 Article

The parthenogenetic Marmorkrebs (marbled crayfish) produces genetically uniform offspring

Journal

NATURWISSENSCHAFTEN
Volume 94, Issue 10, Pages 843-846

Publisher

SPRINGER
DOI: 10.1007/s00114-007-0260-0

Keywords

microsatellites; apomictic reproduction; clonal model organism

Ask authors/readers for more resources

Genetically identical animals are very much in demand as laboratory objects because they allow conclusions about environmental and epigenetic effects on development, structures, and behavior. Furthermore, questions about the relative fitness of various genotypes can be addressed. However, genetically identical animals are relatively rare, in particular, organisms that combine a high reproduction rate and a complex organization. Based on its exclusively parthenogenetic reproduction mode, it has been suggested that the Marmorkrebs (Crustacea, Decapoda, Astacida), a recently discovered crayfish, is an excellent candidate for research addressing the aforementioned questions. However, until now, a study using molecular markers that clearly proves the genetic uniformity of the offspring has been lacking. Here, with this first molecular study, we show that this crayfish indeed produces genetically uniform clones. We tested this with 19 related individuals of various generations of a Marmorkrebs population by means of six different microsatellite markers. We found that all examined specimens were identical in their allelic composition. Furthermore, half of the analyzed loci were heterozygous. These results and the absence of meioses in previous histological studies of the ovaries lead us to conclude the Marmorkrebs propagates apomictically. Thus, a genetically uniform organism with complex morphology, development, and behavior is now available for various laboratory studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available