4.7 Article

Branched poly(lactide) synthesized by enzymatic polymerization: Effects of molecular branches and stereochernistry on enzymatic degradation and alkaline hydrolysis

Journal

BIOMACROMOLECULES
Volume 8, Issue 10, Pages 3115-3125

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm700537x

Keywords

-

Ask authors/readers for more resources

In this article the effects of the number of molecular branches (chain ends) and the stereochemistry of poly(lactide)s (PLAs) on the enzymatic degradation and alkaline hydrolysis are studied. Various linear and branched PLAs were synthesized using lipase PS (Pseudomonas fluorescens)-catalyzed ring-opening polymerization (ROP) of lactide monomers having different stereochemistries (L-lactide, D-lactide, and D,L-lactide). Five different alcohols were used as initiators for the ROP, and the monomer-to-initiator molar feed ratio was varied from 10 to 100 and 1000 for each branch in the polymer architecture. The properties of branched PLAs that would affect the enzymatic and alkaline degradations, i.e., the glass transition temperature, the melting temperature, the melting enthalpy, and the advancing contact angle, were determined. The PLA films were degraded using proteinase K or 1.0 M NaOH solution, and the weight loss and changes in the number average molecular weight (M-n) of the polymer were studied during 12 h of degradation. The results suggest that an increase in the number of molecular branches of branched PLAs enhances its enzymatic degradability and alkali hydrolyzability. Moreover, the change in M-n of the branched poly(L-lactide) (PLLA) by alkaline hydrolysis indicated that the decrease in M-n was in the first place dependent on the number of molecular branches and thereafter on the length of the molecular branch of branched PLA. The branched PLLA, poly(D-lactide) (PDLA), and poly(D,L-lactide) (PDLLA) differed in weight loss and change in M-n of the PLA segment during the enzymatic degradation. It is suggested that the branched PDLLA was degraded preferentially by proteinase K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available