4.6 Article

Arterial baroreflex control of muscle sympathetic nerve activity in the transition from rest to steady-state dynamic exercise in humans

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00708.2007

Keywords

arterial blood pressure; sympathetic nervous system; arm cycling; exercise onset

Funding

  1. NHLBI NIH HHS [HL-045547] Funding Source: Medline

Ask authors/readers for more resources

We sought to investigate arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) in the transition from rest to steady-state dynamic exercise. This was accomplished by assessing the relationship between spontaneous variations in diastolic blood pressure (DBP) and MSNA at rest and during the time course of reaching steady-state arm cycling at 50% peak oxygen uptake (Vo(2peak)). Specifically, DBP-MSNA relations were examined in eight subjects (25 +/- 1 yr) at the start of unloaded arm cycling and then during the initial and a later period of arm cycling once the 50% Vo(2peak) work rate was achieved. Heart rate and arterial blood pressure were progressively increased throughout exercise. Although resting MSNA [16 +/- 2 burst/min; 181 +/- 36 arbitrary units (au) total activity] was unchanged during unloaded cycling, MSNA burst frequency and total activity were significantly elevated during the initial (27 +/- 4 burst/min; 367 +/- 76 au; P < 0.05) and later (36 +/- 7 burst/min; 444 +/- 91 au; P < 0.05) periods of exercise. The relationships between DBP and burst incidence, burst strength, and total MSNA were progressively shifted rightward from unloaded to the initial to the later period of 50% Vo(2peak) arm cycling without any changes in the slopes of the linear regressions (i.e., ABR sensitivity). Thus a continuous and dynamic resetting of the ABR control of MSNA occurred during the transition from rest to steady-state dynamic exercise. These findings indicate that the ABR control of MSNA was well maintained throughout dynamic exercise in humans, progressively being reset to operate around the exercise-induced elevations in blood pressure and MSNA without any changes in reflex sensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available