4.8 Article

Color-changeable optical transport through Se-doped CdS 1D nanostructures

Ask authors/readers for more resources

The optical-transport properties of 1D Se-doped CdS nanostructures with different doping contents and/or crystallization degrees are reported. The locally excited photoluminescence shows a significant redshift during the transport along the long axis of the 1D structures and can leave enough PL intensity for detection. The magnitude of the redshift is found to be highly dependent on the content of doping and the crystallization degree. The experimental results are compared with theoretical calculations based on the fundamental absorption rule of the semiconductor, which demonstrates that the redshift is related to the optical reabsorption effects induced by the local structural disorder in the semiconductors. Such optical properties of 1 D semiconductor structures might be of interest for potential applications in color-tunable nanosized light-emitting and/or frequency-converting devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available