4.5 Article

Vitamin K deficiency inhibits mineralization and enhances deformity in vertebrae of haddock (Melanogrammus aeglefinus L.)

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpb.2007.05.006

Keywords

vertebrae; deformity; haddock; histomorphometry; osteoblasts; osteoclasts; mineralization; vitamin K

Ask authors/readers for more resources

Vitamin K has been known to regulate bone formation through osteocalcin synthesis by osteoblasts, which is important for mineralization and bone structure. The mechanism underlying the relationship of vitamin K with the changes of microanatomy is not fully understood, and our goal is to test whether bone deformities develop in association with vitamin K deficiency. Fish were fed a semi-purified diet containing either devoid (0.00 mg/kg diet) or adequate (40.0 mg/kg diet supplemented but 20.8 mg/kg analyzed) levels of vitamin K (menadione sodium bisulphite) for 20 weeks. At the end of 8 and 20 weeks, fish were subjected to gross examination and X-ray, and mineral content of the vertebrae was measured. The vertebrae were also subjected to histological, histomorphometric and enzyme histochemical examinations to determine the bone formation and resorption. Vitamin K deficiency primarily decreased bone mineralization and subsequently a decrease in bone mass thus resulted in an increased susceptibility to bone deformity. The occurrence of bone deformities coincided with an increased amount of osteoid tissue and decreased bone mineral content. Number of ostcoblasts and osteoclasts were not affected by dietary vitamin K. In conclusion, vitamin K deficiency can impair bone mineralization and enhances bone deformities. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available