4.7 Article

Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism: biological and clinical implications

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 293, Issue 4, Pages C1383-C1394

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00054.2007

Keywords

transport; fluorescence; oxidative stress

Ask authors/readers for more resources

Non-transferrin-bound iron, commonly found in the plasma of iron-overloaded individuals, permeates into cells via pathways independent of the transferrin receptor. This may lead to excessive cellular accumulation of labile iron followed by oxidative damage and eventually organ failure. Mitochondria are the principal destination of iron in cells and a primary site of prooxidant generation, yet their mode of acquisition of iron is poorly understood. Using fluorescent probes sensitive to iron or to reactive oxygen species, targeted to cytosol and/or to mitochondria, we traced the ingress of labile iron into these compartments by fluorescence microscopy and quantitative fluorimetry. We observed that 1) penetration of non-transferrin-bound iron into the cytosol and subsequently into mitochondria occurs with barely detectable delay and 2) loading of the cytosol with high-affinity iron-binding chelators does not abrogate iron uptake into mitochondria. Therefore, a fraction of non-transferrin-bound iron acquired by cells reaches the mitochondria in a nonlabile form. The physiological role of occluded iron transfer might be to confer cells with a safe and efficient cytosolic iron corridor to mitochondria. However, such a mechanism might be deleterious in iron-overload conditions, because it could lead to surplus accumulation of iron in these critical organelles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available