4.5 Article

Rapid assimilation of yolk enhances growth and development of lizard embryos from a cold environment

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 210, Issue 19, Pages 3415-3421

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.005652

Keywords

countergradient variation; growth rate; Sceloporus; tradeoff; yolkectomy

Categories

Ask authors/readers for more resources

Selection for rapid growth and development in cold environments results in a geographic pattern known as countergradient variation. The eastern fence lizard, Sceloporus undulatus, exhibits countergradient variation in embryonic growth and development along latitudinal clines. To identify the proximate causes of countergradient variation, we compared the energy budgets of embryos from a cold environment ( Virginia) and a warm environment (South Carolina) during development at a realistic thermal cycle. The difference in mean egg size between populations was controlled by removing yolk from large eggs and performing a sham manipulation on other eggs. Respiration was measured every 4 days throughout 48 days of incubation. After this period, eggs were dissected and the energy contents of embryos and yolk were determined by calorimetry. As expected from previous experiments, embryos from Virginia reached a more advanced stage of development and deposited more energy within tissues than embryos from South Carolina. The greater absorption of yolk by embryos from Virginia was associated with a higher rate of respiration. Assimilation of yolk by rapidly growing embryos could reduce growth or survival after hatching. Such costs might explain the maintenance of countergradient variation in S. undulatus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available