4.6 Article

Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria

Journal

JOURNAL OF LIPID RESEARCH
Volume 48, Issue 10, Pages 2247-2254

Publisher

ELSEVIER
DOI: 10.1194/jlr.M700271-JLR200

Keywords

biohydrogenation; butyrivibrio fibrisolvens; clostridium proteoclasticum; propionibacterium acnes; rumenic acid

Ask authors/readers for more resources

Digesta samples from the ovine rumen and pure ruminal bacteria were incubated with linoleic acid (LA) in deuterium oxide-containing buffer to investigate the mechanisms of the formation of conjugated linoleic acids (CLAs). Rumenic acid (RA; cis-9,trans-11-18:2), trans-9,trans-11-18:2, and trans-10,cis-12-18:2 were the major CLA intermediates formed from LA in ruminal digesta, with traces of trans-9, cis-11-18:2, cis-9, cis-11-18: 2, and cis-10,cis-12-18:2. Mass spectrometry indicated an increase in the n+1 isotopomers of RA and other 9,11-CLA isomers, as a result of labeling at C-13, whereas 10,12 isomers contained minimal enrichment. In pure culture, Butyrivibrio fibrisolvens and Clostridium proteoclasticum produced mostly RA with minor amounts of other 9,11 isomers, all labeled at C-13. Increasing the deuterium enrichment in water led to an isotope effect, whereby 1 H was incorporated in preference to 2 H. In contrast, the type strain and a ruminal isolate of Propionibacterium acnes produced trans-10,cis-12-18: 2 and other 10,12 isomers that were minimally labeled. Incubations with ruminal digesta provided no support for ricinoleic acid (12-OH,cis-9-18:1) as an intermediate of RA synthesis. We conclude that geometric isomers of 10,12-CLA are synthesized by a mechanism that differs from the synthesis of 9,11 isomers, the latter possibly initiated by hydrogen abstraction on C-11 catalyzed by a radical intermediate enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available