4.7 Article

Sphingosine 1-phosphate rapidly increases endothelial barrier function independently of VE-cadherin but requires cell spreading and Rho kinase

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 293, Issue 4, Pages C1309-C1318

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00014.2007

Keywords

permeability; microscopy; electric cell-substrate impedance sensing; human umbilical vein endothelial cell

Funding

  1. NHLBI NIH HHS [HL45788, HL68079, HL52406] Funding Source: Medline

Ask authors/readers for more resources

Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca2+-dependent, homophilic VE-cadherin binding of endothelial cells, derived from human umbilical veins and grown as monolayers, was disrupted with EGTA, an antibody to the extracellular domain of VE-cadherin, or gene silencing of VE-cadherin with small interfering RNA. All three protocols caused a reduction in the immunofluorescent localization of VE-cadherin at intercellular junctions, the separation of adjacent cells, and a decrease in basal endothelial electrical resistance. In all three conditions, S1P rapidly increased endothelial electrical resistance. These findings demonstrate that S1P enhances the endothelial barrier independently of homophilic VE-cadherin binding. Junctional localization of VE-cadherin, however, was associated with the sustained activity of S1P. Imaging with phase-contrast and differential interference contrast optics revealed that S1P induced cell spreading and closure of intercellular gaps. Pretreatment with latrunculin B, an inhibitor of actin polymerization, or Y-27632, a Rho kinase inhibitor, attenuated cell spreading and the rapid increase in electrical resistance induced by S1P. We conclude that S1P rapidly closes intercellular gaps, resulting in an increased electrical resistance across endothelial cell monolayers, via cell spreading and Rho kinase and independently of VE-cadherin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available