4.3 Article

Microfluidic devices for size-dependent separation of liver cells

Journal

BIOMEDICAL MICRODEVICES
Volume 9, Issue 5, Pages 637-645

Publisher

SPRINGER
DOI: 10.1007/s10544-007-9055-5

Keywords

liver cell; hepatocyte; hydrodynamic filtration; microfluidic device; separation

Ask authors/readers for more resources

Liver is composed of various kinds of cells, including hepatic parenchymal cells (hepatocytes) and nonparenchymal cells, and separation of these cells is essential for cellular therapies and pharmacological and metabolic studies. Here, we present microfluidic devices for purely hydrodynamic and size-dependent separation of liver cells, which utilize hydrodynamic filtration. By continuously introducing cell suspension into a microchannel with multiple side-branch channels, cells smaller than a specific size are removed from the mainstream, while large cells are focused onto a sidewall in the microchannel and then separated into two or three groups. Two types of PDMS-glass hybrid microdevices were fabricated, and rat liver cells were successfully separated. Also, cell size, morphology, viability and several cell functions were analyzed, and the separation performances of the microfluidic devices were compared to that of a conventional centrifugal technique. The results showed that the presented microfluidic devices are low-cost and suitable for clinical use, and capable of highly functional separation with relatively high-speed processing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available