4.8 Article

Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition

Journal

PLANT PHYSIOLOGY
Volume 145, Issue 2, Pages 378-388

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.107.105742

Keywords

-

Categories

Ask authors/readers for more resources

High-affinity sulfate transporters SULTR1;1 and SULTR1;2 are expressed at epidermis and cortex of Arabidopsis ( Arabidopsis thaliana) roots during sulfur limitation. Here, we report that SULTR1;1 and SULTR1;2 are two essential components of the sulfate uptake system in roots and are regulated at posttranscriptional levels together with the previously reported transcriptional control. Double knockout of SULTR1; 1 and SULTR1;2 by T-DNA insertion gene disruption resulted in complete lack of sulfate uptake capacity and severely affected plant growth under low-sulfur conditions. Expression of epitope-tagged proteins SULTR1;1mycHis and SULTR1;2mycHis, under the control of the cauliflower mosaic virus 35S promoter, rescued the uptake of sulfate and the growth of the sultr1;1 sultr1;2 double knockout mutant. The recovery of the double knockout phenotypes was attributable to the posttranscriptional accumulation of sulfate transporter proteins that derive from the epitope-tagged transgenic constructs. Both SULTR1;1mycHis and SUTLR1;2mycHis mRNAs were predominantly found in roots and slightly induced by long-term sulfur limitation. SULTR1;1mycHis and SULTR1;2mycHis proteins were found exclusively in roots, and significantly accumulated by sulfur limitation, correlating with the induction of sulfate uptake activities. In the time course of short-term sulfate starvation treatment, SULTR1; 1mycHis and SULTR1;2mycHis proteins were significantly accumulated during the 8- to 72-h period, causing substantial induction of sulfate uptake activities, while their corresponding mRNAs were expressed constantly around the initial levels, except for the transient induction in the first 2 h. This study suggested the importance of root-specific and sulfur deficiency-inducible accumulation of SULTR1;1 and SULTR1; 2 sulfate transporter proteins for the acquisition of sulfate from low-sulfur environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available