4.5 Article

Functionalization of high density polyethylene in melt state through ultrasonic initiation and its effect on mechanical properties of glass fiber reinforced composites

Journal

POLYMER BULLETIN
Volume 59, Issue 3, Pages 427-438

Publisher

SPRINGER
DOI: 10.1007/s00289-007-0783-8

Keywords

ultrasonic vibration; functionalization reaction; HDPE; maleic anhydride

Ask authors/readers for more resources

Functionalization reaction of high density polyethylene (HDPE) with gamma-methacryloxy-propyltrimethoxysilane (MAS) or with MAS and MAH performed in melt state through ultrasonic initiation by a laboratory-scale ultrasonic extruding reactor was studied in this paper. The effect of ultrasonic intensity on the percentage of grafting and melt flow rate of the functionalized products was investigated. The results show that by imposing ultrasonic vibration during melt-extruding process, the scission of HDPE chain bonds can be caused to form macroradicals, the functionalization reaction of HDPE with MAS or with MAS and MAH can be realized. The percentage of grafting and the melt flow rate of the functionalized products depend upon the ultrasonic intensity and reaction temperature. The fuctionalization reaction of HDPE with MAS can be promoted by adding a second grafting monomer MAH. The ultrasonic-induced products have a higher reactivity with the coupling agents coated on the surface of glass fibers, the mechanical properties of the composite improved by the ultrasonic induced product are higher than that of by peroxide initiated product and the mechanical properties of HDPE/GF composite modified by HDPE-g-MAH-MAS are higher than that of by HDPE-g-MAH. The SEM experimental results indicate that an oriented crystal layer exists between the interface of glass fiber and the HDPE matrix, the interfacial bonding strength is the determining factor of the formation of the oriented crystal layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available