4.3 Article

Cell loss in integrated microfluidic device

Journal

BIOMEDICAL MICRODEVICES
Volume 9, Issue 5, Pages 745-750

Publisher

SPRINGER
DOI: 10.1007/s10544-007-9085-z

Keywords

lab-on-a-chip; microfluidic device; trapping efficiency; hydrodynamic focusing; cell loss; immnunofluorescent assay

Ask authors/readers for more resources

Cell loss during sample transporting from macro-components to micro-components in integrated microfluidic devices can considerably deteriorate cell detection sensitivity. This intrinsic cell loss was studied and effectively minimized through (a) increasing the tubing diameter connecting the sample storage and the micro-device, (b) applying a hydrodynamic focusing approach for sample delivering to reduce cells contacting and adhesion on the walls of micro-channel and chip inlet; (c) optimizing the filter design with a zigzag arrangement of pillars (13 mu m in chamber depth and 0.8 mu m in gap) to prolong the effective filter length, and iv) the use of diamond shaped pillar instead of normally used rectangular shape to reduce the gap length between any two given pillar (i.e. pressure drop) at the filter region. Cell trapping and immunofluorescent detection of 12 Giardia lamblia and 12 Cryptosporidium parvum cells in 150 mu l solution and 50 MCF-7 breast cancer cells in 150 mu l solution was completed within 15 min with trapping efficiencies improved from 79 +/- 11%, 50.8 +/- 5.5% and 41.3 +/- 3.6% without hydrodynamic focusing, respectively, to 90.8 +/- 5.8%, 89.8 +/- 16.6% and 77.0 +/- 9.2% with hydrodynamic focusing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available