4.7 Article

Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles

Journal

MACROMOLECULES
Volume 40, Issue 20, Pages 7306-7310

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ma071089x

Keywords

-

Ask authors/readers for more resources

Interpenetrating polymer network (IPN), random copolymer, and homopolymer nanoparticles of acrylamide and acrylic acid were prepared using an inverse emulsion polymerization technique. Differential scanning calorimetry and Fourier-transform infrared spectroscopy were used to examine the molecular structure of the prepared polymeric nanoparticles. The spherical morphology and size (similar to 250 nm diameter) of the nanoparticles was confirmed using scanning electron microscopy. Dynamic light scattering was used to determine the monodispersity of the particle size distribution and examine the thermally responsive swelling properties of the polymeric nanoparticle structures. Of the particle systems studied, only the IPN nanoparticles exhibited a unique, rapid sigmoidal swelling transition with temperature. These systems also achieved a much larger relative swelling volume compared to random copolymer and homopolymer particles comprised of acrylamide and acrylic acid. Increased cross-linker density resulted in an overall decrease in the maximum relative swelling volume that was obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available