4.3 Article

Mycobacterium tuberculosis 6-kDa early secreted antigenic target (ESAT-6) protein downregulates lipopolysaccharide induced c-myc expression by modulating the extracellular signal regulated kinases 1/2

Journal

BMC IMMUNOLOGY
Volume 8, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2172-8-24

Keywords

-

Categories

Ask authors/readers for more resources

Background: Mycobacterium tuberculosis (Mtb) causes death of 2-3 million people every year. The persistence of the pathogenic mycobacteria inside the macrophage occurs through modulation of host cell signaling which allows them, unlike the other non-pathogenic species, to survive inside the host. The secretory proteins of M. tuberculosis have gained attention in recent years both as vaccine candidates and diagnostic tools; they target the immune system and trigger a putatively protective response; however, they may also be involved in the clinical symptoms of the disease. Results: Our studies showed that RD-1-encoded secretory protein ESAT-6 is involved in modulation of the mitogen-activated protein (MAP) kinase-signaling pathway inside the macrophage. ESAT-6 induced phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) in the cytoplasm but not in the nucleus, which normally is the case for MAP kinases. ESAT-6 also antagonized LPS-induced ERK1/2 phosphorylation in the nucleus. Stimulation of cells by ESAT-6 along with sodium orthovanadate (a tyrosine phosphatase inhibitor) restored phosphorylation of ERK1/2 in the nucleus, suggesting active dephosphorylation of ERK1/2 by some putative phosphatase(s) in the nucleus. Further, ESAT-6 was found to down regulate the expression of LPSinducible gene c-myc in an ERK1/2-dependent manner. Conclusion: This study showed the effect of secretory proteins of M. tuberculosis in the modulation of macrophage signaling pathways particularly ERK1/2 MAP kinase pathway. This modulation appears to be achieved by limiting the ERK1/2 activation in the nucleus which ultimately affects the macrophage gene expression. This could be a mechanism by which secretory proteins of Mtb might modulate gene expression inside the macrophages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available